DEPARTMENT OF MATHEMATICS

With effect from the academic year 2017 - 18

Aim

The programme lays a strong foundation in various branches of Mathematics. It aims at

imparting knowledge, developing problem solving skills, cultivating logical thinking and

creating interest for further studies. It also envisages in acquiring problem solving skills for

competitive examinations, numerical ability in core and interdisciplinary areas which would

widen the scope of career prospects.

Objectives

1. To enable the students to have keen exposure to the different branches of Mathematics so

as to grasp a comprehensive knowledge of Mathematics.

2. To facilitate the students of B.Sc. Mathematics to join post graduate studies which in turn

will offer them job opportunities and research pursuits.

3. To cultivate logical thinking and analytical skills which will sharpen their concentration

and critical analysis.

4. To help the students of Mathematics to apply the skills and knowledge gained through the

study of Mathematics to real life situations and face competitive examinations with

confidence.

Eligibility Norms for Admission

Those who seek admission to B.Sc. Mathematics must have passed the Higher

Secondary Examinations conducted by the Board of Higher Secondary Examination, Tamil

Nadu with Mathematics as one of the subjects or any other examination recognized and

approved by the Syndicate of the Manonmaniam Sundaranar University, Tirunelveli.

Duration of the Programme: 3 Years

Medium of Instruction: English

Passing Minimum

A minimum of 40% in the external examination and an aggregate of minimum 40% is

required. There is no minimum pass mark for Continuous Internal Assessment.

Components of the B.Sc. Mathematics Programme

Part III - Major and Allied

Major		
	Core – Theory (13 x 100)	1300
	Major Project (1 x 100)	100
	Major Elective (2 x 100)	200
Allied (I & II)		
	Theory (4 x 100)	400
	Practical (1 x 100)	100
Total Courses	21	
Total Marks	(21 x 100)	2100

Course Structure

Distribution of Hours and Credits

Course	Sem.	Sem.	Sem.	Sem.	Sem.	Sem.	Tota	al
Course	I	II	III	IV	V	VI	Hours	Credits
Language	6 (3)	6 (3)	6 (3)	6 (3)	-	-	24	12
English	6 (3)	6 (3)	6 (3)	6 (3)	-	-	24	12
						6(5) +		
					6(5) +			
			6(4) +	6(5) +		6(5) +		
Major Core	6 (5)	6 (5)			6(5) +		74	62
			5(4)	5(4)	- 4-0	5(5) +		
					6(5)	~		
						5 (5)		

Elective	-	-	-	-	5 (4)	6 (5)	11	9
Project	-	-	-	-	5 (5)	1	5	5
Allied –Theory	4 (4)	4 (4)	5 (5)	5 (5)	1	1	18	18
Allied – Practical	2	2 (2)					4	2
AECC	2 (2)	2 (2)	1	-	-	1	4	4
SBC	-	1	2 (2)	2 (2)	2 (2)	2 (2)	8	8
NMEC	4 (2)	4 (2)	-	-	-	ı	8	4
* FC - I (Values for Life)	-	(1)	-	-	-		-	1
* FC - II								
(Personality Development)				(1)				1
* FC - III (HRE)	-	-	-	-	(1)	-	-	1
* FC - IV (WS)	-	-	-	-	-	(1)	-	1

* SDP - Certificate Course	-	(1)	-	-	-	-	-	1
* SLP - Extension Activity (RUN)	-	-	(1)	-	-	-	-	1
* STP - Clubs & Committees / NSS	-	-	-	(1)	•	-	-	1
Total	30 (19)	30 (23)	30 (22)	30 (24)	30 (27)	30 (28)	180	140 + 3

Total Number of Hours = 180

Total Number of Credits = 140 + 3

^{*}Courses / Programmes conducted outside the regular working hour

Courses Offered

Semester	Course	Subject code	Paper	Hours/ week	Credit
			Language:		
	Part I	TL1711	Tamil	6	3
		FL1711	French	0	3
			General English:		
	GE1711 A Stream			6	3
	Part II	GE1712	B Stream	0	3
		MC1711	Major Core I: Differential Calculus and Trigonometry	6	5
_	Part III	MA1711	Allied I: Algebra and Calculus (for Physics and Chemistry)	6	5
I		AEC171	Ability Enhancement Compulsory Course (AECC): English Communication	2	2
	Part IV	MNM171	Non Major Elective Course (NMEC): Mathematics for life - I	4	2
		VEC172	Foundation Course I : Values for Life	-	-
	Part V	SDP172	Skill Development Programme (SDP) - Certificate Course	-	-
		STP174	Student Training Programme (STP) - Clubs & Committees / NSS	-	-
			Language		
	Part I	TL1721	Tamil	6	3
		FL1721	French	0	3
			General English		
	Part II	GE1721	A Stream	6	3

		GE1722	B Stream		
II		MC1721	Major Core II: Classical Algebra and Integral Calculus	6	5
	Part III	MA1721	Allied II: Vector Calculus and Differential Equations (for Physics and Chemistry)	6	5
		AEC172	Ability Enhancement Compulsory Course (AECC): Environmental Studies	2	2
	Part IV	MNM172	Non Major Elective Course (NMEC): Mathematics for life – II	4	2
		VEC172	Foundation Course I: Values for Life	-	1
		SDP172	Skill Development Programme (SDP): Certificate Course	-	1
	Part V	STP174	Student Training Programme (STP): Clubs & Committees / NSS	-	-
			Language:		
	Part I	TL1721	Tamil	6	3
		FL1721	French	U	3
III			General English:		
	D (17	Part II GE1721 A Stream	A Stream	6	
	rart II	GE1722	B Stream	Ü	3
		MC1731	Major Core III: Differential Equations and Vector Calculus	6	4
	Part III	MC1732	Major Core IV: Sequences and series	5	4
			Allied III: Probability Theory and Distributions	5	5
	Part IV	SBC173/ SBC174	Skill Based Course (SBC): Meditation and Exercise / Computer Literacy	2	2

		VEC174	Foundation Course II: Personality Development	-	-
			Student Training Programme (STP): Clubs & Committees / NSS	-	-
	Part V	SLP173	Service Learning Programme (SLP): Extension Activity (RUN)	-	1
			Language		
	Part I	TL1741/	Tamil	6	3
		FL1741	French	0	3
			General English		
	Part II	GE1741	A Stream	6	3
	Part II	GE1742	B Stream		
IV		MC1741	Major Core V: Groups and Rings	6	5
	Part III	MC1742	Major Core VI: Analytical Geometry - 3 Dimensions	5	4
		MA1741	Allied IV: Applied Statistics	5	5
	Part IV	SBC173/ SBC174	Skill Based Course (SBC): Meditation and Exercise / Computer Literacy	2	2
		VEC174	Foundation Course II - Personality Development	-	1
	Part V	STP174	Student Training Programme (STP): Clubs & Committees / NSS	-	1
		MC1751	Major Core VII: Linear Algebra	6	5
	Part III	MC1752	Major Core VIII: Real Analysis	6	5
		MC1753	Major Core IX: Graph Theory	6	5

			TOTAL	180	140+3
V 1		WSC176	Foundation Course IV : Women's Studies (WS)	-	1
VI	Part IV	MSK176	Skill Based Course(*SBC): Mathematics for Competitive Examination-II	2	2
		MC1767	(c) Web Designing with HTML		
		MC1766	(b) Boolean Algebra	6	5
		MC1765	(a) Astronomy	_	_
			Elective II:		
	Part III	MC1764	Major Core XIII: Operations Research	5	5
		MC1763	Major Core XII: Number Theory	5	5
		MC1762	Major Core XI: Mechanics	6	5
		MC1761	Major Core X: Complex Analysis	6	5
		HRE175	Human Rights Education (HRE)	-	1
	Part IV	IIDE175	Foundation Course III:		1
		MSK175	Skill Based Course (*SBC): Mathematics for Competitive Examination – I	2	2
V			C++		
		MC1757	(c) Object Oriented Programming with		
		MC1756	(a) Numerical Methods(b) Fuzzy Mathematics	5	4
		MC1755	Elective I:		
		MC1754	Major – Project	5	5

*SBC (Mathematics for Competitive Examination - I & II) for the V & VI semesters is offered for the students of our department, to trigger their interest in quantitative aptitude and prepare them for Competitive Examinations.

NMEC (**Mathematics for life - I & II**) is offered to the students of other departments for the I & II semesters to develop the quantitative aptitude needed for various Competitive Examinations. Students must have studied Mathematics in Higher Secondary to opt for these courses.

Project is introduced in the V Semester to make the students learn different mathematical concepts independently and present the report with confidence.

Self-Learning - Extra Credit Course

Semester	Subject code	Title of the paper	Hours/week	Credit
III / V	MC17S1	Discrete Mathematics - I	-	2
IV/ VI	MC17S2	Discrete Mathematics - II	-	2

Instruction for Course Transaction Distribution of Total Hours - Major Core

Components	Sem.	Sem.	Sem.	Sem.	Sem.	Sem.
Components	Ι	II	III	IV	V	VI
Lecture hours	75	75	75/60	75/60	75/60	75/60
Assignment / Group discussion / Problem Solving	10	10	10	10	5	5
CIA (Test, Quiz)	5	5	5	5	5	5
Seminar	-	-	-	-	5	5
Total Hours / semester	90	90	90/75	90/75	90/75	90/75

Distribution of Total Hours - Elective/ Allied

	Ele	ective	All	ied
Components	Sem. V	Sem. VI	Sem. I/II	Sem. III /IV
Lecture hours	60	75	75	60
Problem Solving / Assignment/ Group discussion	10	10	10	10
CIA (Test, Quiz)	5	5	5	5
Total Hours	75	90	90	75

Value Added Courses

S. No.	Name of the course	Total hours	Credit
I	Training for TNPSC group examinations	30	1
II	Quick Arithmetic for Competitive examinations	30	1

- **1. Value added course 1:** To motivate the students to take up government examinations.
- **2. Value added course 1:** To enhance the quantitative aptitude needed for Competitive examinations.

Examination Pattern

Ratio of Internal and External:

(Major / Elective / Allied)	25:7	5		NMEC	40:60	
Components of Internal:	Test	:	15	Test	:	20
	Quiz	:	5	Quiz	:	10
	Assignment	:	5	Assignment	:	10
	Total	:	25	Total	:	40

Question Pattern (Major / Allied/ Elective)

Internal Test	Marks	External Exam	Marks
			1.0
Part A 4×1 (No Choice)	4	Part A 10×1 (No Choice)	10
Part B 2 × 5 (Internal Choice)	10	Part B 5 × 5 (Internal Choice)	25
Part C 2 × 8 (Internal Choice)	16	Part C 5 × 8 (Internal Choice)	40
Total	30	Total	75

Question Pattern (NMEC)

Internal Test	Marks	External Exam	Marks
Part A 4 × 1 (No Choice)	4	Part A 10 × 1 (No Choice)	10
Part B 3 × 3 (Internal Choice)	9	Part B 5 × 3 (Internal Choice)	15
Part C 1 × 7 (Internal Choice)	7	Part C 5×7 (Internal Choice)	35
Total	20	Total	60

B.Sc. Programme Outcomes (PO)

PO	Upon completion of the B.Sc. Degree Programme, the graduates will be able to
PO - 1	apply the acquired scientific knowledge to face day to day needs.
PO - 2	create innovative ideas through laboratory experiments.
PO - 3	carry out field works and projects independently and in collaboration with other
	institutions and industries.
PO - 4	reflect upon green initiatives and take responsible steps to build a sustainable
	environment.
PO - 5	face challenging competitive examinations that offer rewarding careers in science
	and education.
PO - 6	impart communicative skills and ethical values.
PO - 7	equip students with hands on training through various courses to enhance
	entrepreneurship skills.

PROGRAMME SPECIFIC OUTCOMES (PSO)

PSO	Upon completion of B.Sc. Mathematics, the graduates will be able to	PO Addressed
PSO - 1	acquire a strong foundation in various branches of mathematics to formulate real life problems into mathematical models.	PO - 1
PSO - 2	develop problem solving skills, cultivating logical thinking, and face competitive examinations with confidence	PO - 5
PSO - 3	enhance numerical ability and address problems in interdisciplinary areas which would help in project and field works.	PO - 3
PSO - 4	apply the mathematical knowledge and skills to face competitive examination with confidence.	PO - 5
PSO - 5	pursue higher studies which in turn will offer them job opportunities in government and public sector undertakings, banks, central government institutes etc.	PO - 5
PSO - 6	develop entrepreneurial skills, become empowered and self-dependent in society.	PO - 7
PSO - 7	understand the professional, ethical, legal, security, social issues and responsibilities.	PO - 4
PSO - 8	apply knowledge of principles, concepts and results in specific subject area to analyse their local and global impact.	PO - 3
PSO - 9	communicate appropriately and effectively, in a scientific context using present technology and new findings.	PO - 6

Semester I : I

Name of the Course : Differential Calculus and Trigonometry

Course Code : MC1711

No. of hours per week	Credit	Total No. of hours	Marks
6	5	90	100

Objectives:

- 1. To impart knowledge on applications of Differential Calculus and important concepts of Trigonometry
- 2. To enhance problem solving skills

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	recall the idea of derivative, rules of differentiation and understand the concept of p-r equation	PSO - 1	R
CO - 2	learn the concepts of curvature, circle of curvature, evolute and apply the concepts to solve problems.	PSO - 2	U, Ap
CO - 3	recognize the rules of identifying asymptotes and employ the same to different curves	PSO - 3	Ap, U
CO - 4	acquire the knowledge about hyperbolic functions and compare it with circular functions, trigonometric functions, inverse trigonometric functions and their properties.	PSO - 1	U, E
CO - 5	categorize the methods of finding the sum of trigonometric series	PSO - 8	An

Curvature - Radius of curvature in Cartesian, parametric and polar co-ordinates - p-r equation of a curve - Formula for radius of curvature in p-r co-ordinates.

Unit II

Co-ordinates of the centre of curvature - Circle of curvature - Evolute.

Unit III

Linear asymptotes - Asymptotes parallel to co-ordinate axes and inclined asymptotes - Intersection of a curve with its asymptotes - Asymptotes of polar curves.

Unit IV

Hyperbolic functions - Relations between hyperbolic functions - Inverse hyperbolic functions, Logarithm of complex quantities.

Unit V

Summation of trigonometric series - Method of differences - Sum of sines of n angles in A.P - Sum of cosines of n angles in A.P - Summation of series by using complex quantities.

Text Books:

1. Arumugam, S., & Issac, A. (2014). Calculus. Palayamkottai: New Gamma Publishing House.

Chapter 3: Sections 3.3 - 3.5, 3.11 of Part - I

2. Narayanan, S., & Manicavachagom Pillay, T. K. (2012). Trigonometry. S. V. Publications.

Chapters: 4; Chapter 5: Section 5; Chapter 6 (except sections 3.1, 3.2 and related Problems).

- 1. Narayanan, S. & Manicavachagom Pillay, T. K. (2007). Calculus. (Volume I). Viswanathan Printers & Publishers.
- 2. Arumugam, S. & Thanga Pandi Issac, A. (2014). Sequences and Series & Trigonometry. New Gamma Publishing House.
- 3. Rawat, K. S. (2005). Trigonometry. Sarup & Sons.
- 4. Duraipandian, P. & Kayalal Pachaiappa. (2009). Trigonometry, Muhil Publishers.
- 5. Joseph A. Mangaladoss. (2005). Calculus. Presi Persi Publications.

Semester I : I

Name of the Course : Algebra and Calculus (Allied for Physics & Chemistry)

Course Code : MA1711

No. of hours per week	Credit	Total No. of hours	Marks
6	5	90	100

Objectives:

1. To impart knowledge in concepts related to Algebra

2. To solve problems in Physical Science

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	recall the fundamentals of algebraic equations, matrices and rules of integration	PSO - 1	R
CO - 2	practice the formation of equations and compute symmetric functions of roots in terms of coefficients	PSO - 2	U, Ap
CO - 3	revise the properties of Eigen values of the matrices	PSO - 3	Ap, U
CO - 4	learn Beta, Gamma functions and evaluate integrals using them	PSO - 4	U, E
CO - 5	practice the expansion of Fourier series and utilize the same for higher studies	PSO - 5	An

Theory of equations - Formation of equations - Relation between roots and coefficients - Symmetric functions of the roots in terms of coefficients.

Unit II

Transformation of equations - Formation of equation whose roots are multiplied by k and diminished by h - Approximate solutions of Numerical Equations - Newton's and Horner's method.

Unit III

Matrices - Characteristic matrix - Characteristic equation of a matrix - Cayley Hamilton theorem (Statement only) - Eigen values and Eigen vectors - Properties of Eigen values.

Unit IV

Beta and Gamma functions - Properties - Evaluation of integrals using Beta and Gamma Functions - Relation between Beta and Gamma functions.

Unit V

Fourier Series Expansion - Fourier coefficients - Half Range Expansion - Sine Series, Cosine Series.

Text Books:

- 1. Arumugam, S., & Issac, A. (2012). Allied Mathematics (Paper I). Palayamkottai, New Gamma Publishing House.
 - Chapter 1: Sections 1.1, 1.2, 1.4 and 1.5; Chapter 2: Sections 2.3 and 2.4.
- 2. Arumugam, S., & Issac, A. (2007). Allied Mathematics (Paper III). Palayamkottai, New Gamma Publishing House.
 - Chapters 2 and 3.

- 1. Manicavachagom Pillay, T. K. & Natarajan, T., & Ganapathy, K. S. (2007). Algebra. (Volume I). Viswanathan Printers & Publishers.
- 2. Paul. K. Rees., & Fred W. Sparks. (1967). College Algebra. McGraw Hill Book Company.
- 3. Narayanan, S., & Manicavachagom Pillay, T. K. (2007). Calculus. (Volume I). Viswanathan Printers & Publishers.
- 4. Joseph A. Mangaladoss. (2005). Calculus. Presi Persi Publications.
- 5. Narayanan, S., & Manicavachagom Pillay, T. K. (2007). Calculus. (Volume II). S.Viswanathan Printers & Publishers PVT. Ltd.

Semester I : I

Name of the Course : Mathematics for life I (NMEC)

Course Code : MNM171

No. of hours per week	Credit	Total No. of hours	Marks
4	3	60	100

Objectives:

- 1. To develop the quantitative aptitude of the students
- 2. To solve problems required for various competitive examinations

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	recall the formation of number system	PSO – 1	R
CO - 2	review the rules of operations on numbers	PSO – 2	U
CO - 3	differentiate and compare different types of fractions	PSO-3	An
CO - 4	apply BODMAS rule for simplification and determine missing numbers in a sequence	PSO – 5	Ap
CO - 5	construct the mathematical simple real life problems and develop solutions	PSO – 9	С

Numbers - Face value and Place value of a Digit in a Number - Test of divisibility, Applications of Algebraic Formulae, Unit digit - Series

Unit II

H. C. F and L. C. M of numbers - Factorization method - Common division method, H.C.F and L.C.M of decimal fraction - Comparison of fractions.

Unit III

Decimal fraction - Conversion of decimal into vulgar fraction - Operations on decimal fractions - Comparison of fractions - Recurring decimal - Mixed recurring decimal.

Unit IV

Simplification - BODMAS rule - Modulus of a real number - Virnaculum - Some real life problems, Missing numbers in the expression.

Unit V

Square root and cube root - Finding square root by factorization method - Perfect square and perfect cube.

Text Book:

Aggarwal, R.S. (2014). Quantitative Aptitude. S. Chand and Company LTD.

Chapters: 1 to 5

- 1. Abhijit Guha. (2006). Quantitative Aptitude for Competitive Examination. (4th Edition). Tata McGraw Hill Education Private Limited.
- 2. Immaculate, M. (2009). Mathematics for Life. Nanjil offset Printers.
- 3. Arun Sharma. (2008). Objective Mathematics. (2^{nd} Edition). Tata McGraw Hill Publishing Company Limited.
- 4. Chauhan, R.S. Objective Mathematics. (2011). Unique Publishers.
- Goyal, J. K., & Gupta K. P. (2011). Objective Mathematics. (6th Revised Edition). Pragati Prakashan Educational Publishers.

Semester I : II

Name of the Course : Classical Algebra and Integral Calculus

Course Code : MC1721

No. of hours per week	Credit	Total No. of hours	Marks
6	5	90	100

Objectives:

- 1. To give a sound knowledge in Classical Algebra
- 2. To solve problems in applications of Integral Calculus

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO – 1	recall the fundamentals of algebraic equations and rules o integration	PSO – 1	R
CO – 2	apply fundamental theorem of algebra in framing and solving equations	PSO – 1	U
CO – 3	choose appropriate method for transformation of equations	PSO – 1	Ap
CO – 4	develop the skill of evaluation of double and triple integrals ove different regions	PSO – 1	Ap
CO – 5	identify Beta, Gamma functions and utilize them for the evaluation of definite integrals	PSO – 1	Ap, E
CO – 6	develop the Fourier series expansion in any interval and apply the same for solving technical and physical problems	PSO – 1	Ap, An

Preliminaries - Fundamental theorem of Algebra - Relations between roots and coefficients - Symmetric functions of the roots - Sum of r^{th} powers of the roots - Newton's theorem on the sum of the powers of the roots.

Unit II

Transformation of Equations - Roots with sign changed - Roots multiplied by a given number - Reciprocal equations - Increasing or decreasing the roots of a given equation by a given quantity - Removal of terms - Descarte's rule of signs – Rolle's theorem.

Unit III

Double integrals - Evaluation of double integrals - Changing the order of integration - Triple integrals.

Unit IV

Beta and Gamma functions - Definition and properties - Relation between Beta and Gamma functions - Evaluation of integrals using Beta and Gamma functions.

Unit V

Fourier series expansion - Fourier coefficients, Half range series expansion - Sine and cosine series - Fourier series and half range series expansion in an arbitrary interval.

Text Books:

- 1. Manicavachagom Pillay, T. K., & Natarajan, T., & Ganapathy, K. S. (2007). Algebra. (Volume I). S. Viswanathan Printers & Publishers.
 - Chapter 6: Sections 6.1 to 6. 17, 6.19, 6.20, 6.24, 6.25.
- 2. Arumugam, S., & Issac, A. (2014). Calculus. Palayamkottai, New Gamma Publishing House.
 - Chapter 3: Sections 3.1 to 3.3; Chapters 4 & 5 of Part II

- 1. Arumugam, S., & Issac, A. (2003). Classical Algebra. Palayamkottai, New Gamma Publishing House,
- 2. Narayanan, S., & Manicavachagom Pillay, T. K. (2007). Calculus. (Volume II). S.Viswanathan Printers & Publishers PVT. Ltd.
- 3. Paul. K. Rees., & Fred W. Sparks. (1967). College Algebra. McGraw Hill Book Company.
- 4. Sharma, A. K. (2005). Text Bok of Multiple Integrals. Discovery Publishing House.
- 5. Dhami, H. S. (2009). Integral Calculus. New Age International Publishers.

Semester I : II

Name of the Course : Vector Calculus and Differential Equations (Allied)

Course Code : MA1721

No. of hours per week	Credit	Total No. of hours	Marks
6	5	90	100

Objectives:

- 1. To introduce the concept of vector operators
- 2. To impart the mathematical knowledge essential for solving problems in Physical Science

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	explain the physical meaning and properties of curl and divergence	PSO – 1	U
CO - 2	practice the computation of line integrals, surface integrals	PSO – 2	Ap
CO - 3	use computational tools to solve problems and applications of partial differential equations of first order	PSO – 2	Ap
CO - 4	find the complementary function and particular integral of a differential equation by using appropriate methods	PSO – 8	U
CO - 5	use Laplace transform and their inverse to solve differential equations	PSO – 3	Ap

Vector differentiation - Gradient - Divergence and curl - Solenoidal, irrotational and harmonic vectors.

Unit II

Vector integration - Work done by a force - Evaluation of line integrals and surface integrals.

Unit III

Linear differential equation with constant coefficients - Particular integrals of the form e^{ax} , $\sin ax$, $\cos \cos ax$, x^n , $e^{ax}f(x)$, $x^nf(x)$, Homogeneous linear equations.

Unit IV

Partial differential equations of first order - Formation - Methods of solving the first order differential equation - Lagrange's Equation.

Unit V

Laplace Transformation - Properties, Inverse Laplace transform - Properties.

Text Books:

- 1. Arumugam, S., & Thangapandi Issac, A. (2011). Analytical Geometry 3D and Vector calculus. Palayamkottai, New Gamma Publishing House.
 - Chapter 5; Chapter 7: Sections 7.1 and 7.2.
- 2. Arumugam, S., & Issac, A. (2007). Allied Mathematics (Paper II). Palayamkottai, New Gamma Publishing House.
 - Chapter 5; Chapter 6: Sections 6.1 to 6.4; Chapter 7: Sections 7.1 to 7.3.

- Narayanan., & Manicavachagam Pillai, K. (1980). Vector Algebra & Analysis.
 S.Viswanathan Printers & Publishers PVT. Ltd.
- 2. Gupta, P. P., Malik, G. S, Gupta, R. K. (1985). Vector Analysis. Rastogi Publications.
- 3. Durai Pandian, P., & Laxmi Durai Pandian. (1986). Vector Analysis. Emerald Publishers.
- 4. Sankaranarayanan and others. (2006). Differential Equations and Applications. PRESI PERSI Publishers.
- 5. Venkatachalapathy, S. G. (2012). Ordinary Differential Equations. Margham Publications.

Semester I : II

Name of the Course : Mathematics for life – II (NMEC)

Course Code : MA1721

No. of hours per week	Credit	Total No. of hours	Marks
4	3	60	100

Objectives:

1. To develop the quantitative aptitude of the students

2. To solve problems needed for various competitive examinations

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	find the average of numbers and solve some real life problems	PSO-4	U, Ap
CO - 2	frame equations and solve problems involving ratios and fractions	PSO – 3	Ap
CO - 3	apply law of indices sand surds to find missing numbers in an expression	PSO – 4	Ap
CO - 4	compare surds and ratio	PSO – 8	An
CO - 5	learn ratio and proportion and practice duplication and triplication of rations	PSO – 6	U, Ap
CO – 6	employ the problems related to ages and apply the same to real life situations	PSO – 4	Ap

Average - Average of numbers, Average Speed, Some real life problems.

Unit II

Problems on Numbers - Framing and solving equations involving unknown numbers - Problems involving ratios and fractions.

Unit III

Problems on ages - Comparison on ages of two persons - Ratio of ages.

Unit IV

Surds and Indices - Application of laws of indices and surds - Missing numbers in the expression - Comparison of surds.

Unit V

Ratio and Proportion - Fourth, third and mean proportional - Comparison of ratios, Compound ratio - Duplicate and sub-duplicate Ratio - Triplicate and sub-triplicate ratio - Variation.

Text Book:

Aggarwal, R.S. (2014). Quantitative Aptitude. (Revised Edition). S. Chand and Company LTD.

Chapters: 6 to 9 and 12.

- Abhijit Guha. (2006). Quantitative Aptitude for Competitive Examination. (4th Edition). Tata McGraw Hill Education Private Limited.
- 2. Immaculate, M. (2009). Mathematics for Life. Nanjil offset Printers.
- 3. Arun Sharma. (2008). Objective Mathematics. (Second Edition). Tata McGraw Hill Publishing Company Limited.
- 4. Chauhan, R.S. (2011). Objective Mathematics. Unique Publishers.
- Goyal, J. K., & Gupta, K. P. (2011). Objective Mathematics. (6th Revised Edition). Pragati Prakashan Educational Publishers.

Semester : III

Name of the course : Differential Equations and Vector Calculus

Course Code : MC1731

No. of hours per week	Credit	Total No. of hours	Marks
6	6	90	100

Objectives:

- 1. To gain deeper knowledge in differential equations, differentiation and integration of vector functions
- 2. To apply the concepts in higher mathematics and physical sciences

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	distinguish linear, nonlinear, ordinary and partial differential equations	PSO – 4	An
CO - 2	solve linear differential equations with constant and variable coefficients	PSO – 8	U
CO - 3	explain the basic properties of Laplace Transforms and Inverse Laplace Transforms.	PSO – 1	U
CO - 4	use the Laplace transform to find the solution of linear differential equations	PSO – 2	Ap
CO - 5	learn methods of forming and solving partial differential equations	PSO – 3	U
CO - 6	learn differentiation and integration of vector valued functions	PSO – 4	U
CO - 7	evaluate line and surface integrals using Green's theorem, Stoke's theorem and Gauss divergence theorem	PSO – 8	Ap, E
CO - 8	apply the concepts to solve problems in physical sciences and engineering	PSO – 3	Ap

Linear differential equation with constant coefficients - Particular integrals of functions of the form e^{ax} , $\sin \sin ax$, $\cos \cos ax$, x^n , $e^{ax}f(x)$, $x^nf(x)$, Homogeneous Linear equations.

Unit II

Laplace Transformation - Properties, Inverse Laplace transform - Properties - Solving linear differential equations and simultaneous equations of first order using Laplace transform.

Unit III

Formation of partial differential equations - First order partial differential equation - Methods of solving the first order partial differential equations - Lagrange's Equation. Charpit's method.

Unit IV

Vector differentiation - Gradient - Equation of tangent plane and normal line - Unit normal - divergence and curl - Solenoidal, irrotational and harmonic vectors.

Unit V

Vector integration - Line integrals & Surface integrals, Green's, Stoke's and Gauss divergence theorems (statement only). Verification of Green's, Stoke's and Gauss divergence theorems.

Text Books:

- 1. Arumugam, S., & Issac. (2011). Differential equations and applications. New Gamma Publishing House.
 - Chapter 2: Sections 2.1 to 2.4, Chapter 3, Chapter 4: Sections 4.1 to 4.3 & 4.5.
- 2. Arumugam, S., & Thangapandi Issac. (2014). Analytical Geometry 3D and Vector calculus. Palayamkottai: New Gamma Publishing House. Chapters 5 and 7.

- 1. Sankaranarayanan., & others. (2006). Differential equations and applications. PRESI-PERSI Publishers.
- 2. Narayanan., & Manicavachagampillai. (2009). Differential Equations. Vishwanathan S. Printers & Publishers Pvt. Ltd.
- 3. Venkatachalapathy, S. G. (2012). Ordinary Differential Equations. Margham Publications.
- 4. Narayanan., & Manicavachagampillai, K. (1980). Vector Algebra & Analysis. Viswanathan, S. Printers & Publishers Pvt. Ltd.
- 5. Durai Pandian, P., & Laxmi Durai Pandian. (1986). Vector Analysis. Emerald Publishers.

Semester : III

Name of the course : Sequences and Series

Course Code : MC1732

No. of hours per week	Credit	Total No. of hours	Marks
5	5	75	100

Objectives:

1. To introduce the primary concepts of sequences and series of real numbers

2. To develop problem solving skills

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	explain the primary concepts of sequences and series of real numbers	PSO – 1	U
CO - 2	define convergence and divergence of sequences and series	PSO – 1	R
CO - 3	distinguish between convergence and divergence of sequences and series	PSO – 2	U
CO - 4	relate the behaviour of monotonic and geometric sequences and series	PSO – 8	Ap
CO - 5	calculate the limit and peak point of sequences	PSO – 3	An
CO - 6	analyze the importance of Cauchy's general principle of convergence of sequences and series	PSO – 7	An
CO - 7	evaluate the convergence of series using different types of tests.	PSO – 4	Е
CO - 8	develop the skill of analyzing in sequence and series.	PSO – 4	An

Sequences - Range of a sequence - Limits - Bounded, monotonic, convergent, oscillating and divergent sequences.

Unit II

Algebra of limits - Null Sequence - Behavior of monotonic sequences - Behavior of Geometric Sequence.

Unit III

Subsequences - Limit Points - Cauchy sequences in R and Cauchy's general principle of convergence.

Unit IV

Series - Convergence and divergence - Cauchy's general principle of convergence - Comparison test - Alternative forms of the Comparison test - Behaviour of harmonic series.

Unit V

Test of convergence of series with Kummer's test, D' Alembert's Ratio test, Raabe's test, Root test, Cauchy's condensation test (proof using comparison test).

Text Book:

Arumugam, S., & Issac. (2006). Sequences and series. Palayamkottai: New Gamma Publishing House.

Chapter 3: Sections 3.1 to 3.7, 3.9 - 3.11.

Chapter 4: Sections 4.1, 4.2 (problems related to ratio and root tests from sections 4.3 and 4.4).

- 1. Bali, N. B. (2005). Real Analysis. Laxmi Publications.
- 2. Somasundaram, D., & Choudhary, B. (2010). A first course in Mathematical Analysis. Narosa Publishing House Pvt. Ltd.
- 3. Singh, J. P. (2010). Real analysis. Ane Books Pvt. Ltd.
- 4. Gupta, S. L., & Nisha Rani. (2008). Fundamental Real Analysis. Vikas Publishing House Pvt. Ltd.
- 5. Balaji, G. (2014). Engineering Mathematics. I. Balaji Publishers.

Semester : III

Name of the course : Probability Theory and Distributions (Allied)

Course Code : MA1731

No. of hours	Credit	Total No. of hours	Marks
5	5	75	100

Objectives:

- 1. To impart knowledge on the basic concepts of Probability theory and Probability distributions
- 2. To apply the theory in real life situations

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	recall the definition of probability and set functions	PSO – 1	R
CO - 2	differentiate between probability and conditional probability and compute according to the requirement	PSO – 4	An
CO - 3	understand the definition of random variables, their types and related concepts	PSO – 1	U
CO - 4	detect the different probability distributions which are widely used	PSO – 4	An
CO - 5	apply the techniques to prove the properties of probability and related distributions	PSO – 8	Ap
CO - 6	choose the suitable probability distribution corresponding to a given data	PSO – 5	Е
CO - 7	test the validity of a given data	PSO - 9	Е

Probability - Experiment - Sample space - Events - Conditional probability - Properties - independent events - Multiplication rule of probability - Baye's Theorem.

Unit II

Random Variables - Discrete and continuous random variables - Probability density function - Distribution function - Mathematical expectations - Mean and variance.

Unit III

Moment generating function - Properties - Cumulant generating function - Characteristic function - Poisson distribution - Recurrence formula for moments - Fitting of Poisson distribution.

Unit IV

Binomial distribution - Moment generating function about origin and mean -Recurrence formula for moments - Mode of Binomial distribution - Fitting of Binomial distribution.

Unit V

Normal Distribution - Properties of Normal curve - Moment generating function about origin and mean - Moments - Standard Normal distribution - Fitting of Normal distribution by area method and ordinate method.

Text Book:

Arumugam, S., & others. (2006). Statistics. New Gamma Publishing House. Chapter 11: 11.1 - 11.2; Chapter 12: 12.1 - 12.6; Chapter 13: 13.1 - 13.3.

- 1. Kapur, J.N., & Saxena. (1986). Mathematical Statistics. (12th Edition). Chand & Company.
- 2. Pillai, R.S.N., & Bagavathi, V. (1989). Statistics. (12th Edition). Chand & Company.
- 3. Mangaladoss., & others. (1994). Statistics and its application. Suja Publishing House.
- 4. Sharma, J.N., & Goyal, J. K. (1987). Mathematical Statistics. (11th Edition). Krishna Bakashar Mandir.
- 5. Gupta, S.P. (2012). Statistical Methods. (42nd Edition). Sultan Chand and Sons.

Semester : III/ V

Name of the course : Self-Learning Course – Discrete Mathematics - I

Course Code : MC17S1

Objectives:

1. To develop the interest of self-learning in diverse subjects related to mathematics

2. To convert real life problems into mathematical problems

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	learn some important notions of graph theory	PSO – 1	U
CO - 2	be familiar with the definitions of basic graph theory	PSO – 1	U
CO - 3	give matrix representation of various graphs	PSO - 5	С
CO - 4	prove simple results in graph theory	PSO - 1	U
CO - 5	write algorithms for proven results	PSO - 5	С
CO - 6	understand the basics of relations and functions	PSO - 1	U
CO - 7	classify the types of functions and relations	PSO - 4	An
CO - 8	draw the graphs of given functions	PSO - 5	С
CO - 9	cite examples of different types of functions	PSO - 1	U
CO - 10	analyze the difference between a relation and a function	PSO - 4	An

Graph - Undirected Graph - Directed Graph - Multi Graph - Pseudo Graph - Simple Graph - General Graph - Degree of a vertex - Theorems - Finite Graph - Order of a Graph - Size of a Graph - Null Graph - Isolated Graph - Regular Graph - Isomorphic Graphs.

Unit II

Matrix Representation of a Graph - Adjacency matrices - Incidence Matrix - Examples - Sub graph - Walks - Closed walk - Open walk - Path - Length of a path - Circuit - Connected Graphs - Euler Graph - Hamiltonian Graph - Sub graph.

Unit III

Propositional Calculus - Connectives - Tautology and contradiction - Examples - Equivalence Formulae - Implication - Laws of Implication and Equivalence - Basic Logical Laws - Procedure for proving Tautological Implications - Duality Law.

Unit IV

Relations - Complementary Relation - Inverse Relation - Union and intersection of two Relations - Symmetric Relation - Anti Symmetric Relation - Reflexive Relation - Transitive Relation - Equivalence Relation - Partially ordering Relation - Domain and Range of a Relation - Composition of Relations - Examples.

Unit V

Functions - Definition and Examples of Functions - Types of Functions - Classification of Functions - Algebraic Functions - Transcendental Functions - Composition of functions - Identity - Function - Inverse of a Function - Problems.

Text Book:

Geetha, P. (2011). Discrete Mathematics. Chennai: SCITECH Publications.

Chapter 11: Sections 11.1,11.2 & 11.3 (11.3.1 to 11.3.6 only)

Chapter 1: Sections 1.1 to 1.9; Chapter 3: Sections 3.23 to 3.33;

Chapter 5: Sections 5.1 to 5.8.

- 1. Vatsa, B. S., & Suchi Vatsa. (2009). Discrete Mathematics. (4th Edition). New Age International Publications.
- 2. Mallik, D.S., & Sen, M. K. (2010). Discrete Mathematics Theory and Applications. (Revised Edition). Cengage Learning India Pvt. Ltd.
- 3. Chauhan, J.P. (2015). Discrete Structures and Graph Theory. (6th Edition). Krishna Prakashan Media Pvt. Ltd.
- 4. Bernard Kolman., Robert C. Busby., & Sharon Cutler Ross. (2009). Discrete Mathematical Structures. (6th Edition). PHI Learning Pvt. Ltd.
- 5. Lovasz, L., Pelikan, J., & Vesztergombi, K. (2008). Discrete Mathematics Elementary and Beyond. (5th Edition). Springer International Edition.

Semester : IV

Name of the course : Groups and Rings

Course Code : MC1741

No. of hours per week	Credit	Total No. of hours	Marks
6	6	90	100

Objectives:

1. To introduce the concepts of Group theory and Ring theory

2. To gain more knowledge essential for higher studies in Abstract Algebra

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO – 1	recall the definitions of groups ,rings, functions and also examples of groups and rings	PSO - 1	R
CO – 2	explain the properties of groups, rings and different types of groups and rings	PSO - 1	U
CO – 3	develop proofs of results on Permutation groups ,Cyclic groups, Quotient group, Subgroups, sub rings , quotient rings	PSO - 5	С
CO – 4	examine the properties of Ideals, Maximal and Prime ideals, Cosets, order of an element	PSO - 8	Е
CO – 5	test the homomorphic and isomorphic properties of groups and rings	PSO - 4	An
CO - 6	develop the concepts of ordered integral domains and Unique Factorization Domains	PSO - 5	Е
CO - 7	apply the theory of Groups and Rings and solve problems	PSO - 8	Ap

Groups - Definition and examples - Permutations - subgroups - cyclic groups.

Unit II

Order of an element - Normal subgroups - Cosets and Lagrange's theorem.

Unit III

Quotient groups - Isomorphism - Fundamental theorem of homomorphism.

Unit IV

Rings - Definition and examples - Elementary properties of rings - Isomorphism of rings - Types of rings - Characteristic of a ring.

Unit V

Subrings - Ideals - Ordered integral domain - Unique factorization domain.

Text Book:

Arumugam, S., & Thangapandi Issac, A. (2011). Modern Algebra. Scitech Publications.

Chapter 3: Sections 3.1, 3.4 - 3.11; Chapter 4: Sections 4.1 to 4.10, 4.12, 4.13

- 1. Surjeet Singh., & Qazi Zameeruddeen. (2006). Modern Algebra. (8th Edition). Vikas Publishing House.
- 2. Santiago, M.C. (2011). Modern Algebra. (1st Edition). Tata McGraw Publishing Company Limited.
- 3. Gopalakrishnan, N. S. (2015). University Algebra. (3rd Edition). New Age International Publishers.
- 4. Vatsa, B. S., & Suchi Vatsa. (2010). Modern Algebra. (2nd Edition). New Age International Publishers.
- 5. Joseph A. Gallian. (1999). Contemporary Abstract Algebra. (4^{th} Edition). Narosa Publishing House Pvt. Ltd.

Semester : IV

Course Code : MC1742

No. of hours per week	Credit	Total No. of hours	Marks
5	5	75	100

Objectives:

- 1. To gain deeper knowledge in three dimensional Analytical Geometry
- 2. To develop creative thinking, innovation and synthesis of information

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	recall the basic definitions and concepts of planes and lines	PSO – 1	R
CO - 2	demonstrate the Projection of the line joining two points, Cosines of the line joining two points and will be able to solve problems	PSO – 3	Ap
CO - 3	calculate the distance between points, lines and planes and the angles between lines and planes	PSO – 2	An
CO - 4	draw three dimensional surfaces from the given information	PSO – 4	An
CO - 5	discuss the characteristics and properties of 3 - dimensional objects like sphere, cube etc.,	PSO – 1	U
CO - 6	develop the skill in 3 - dimensional geometry to gain mastery in related courses	PSO – 6	С

Distance between points - Angle between two lines - Projection on a line - Direction cosines - Direction ratios of the join of two points - Projection of the line joining two points - Cosines of the line joining the points - Conditions for perpendicularity and parallelism.

Unit II

Equation of a plane in different forms - Intercept form - normal form - Angle between the planes -The ratio in which the plane divides the line joining the points - A plane through the line of intersection of two given planes - length of perpendicular - Planes bisecting the angle between two planes.

Unit III

Equation of a line in different forms - The plane and the straight line - Angle between the lines-image of a line - plane and a line - Line of intersection of two planes - Angle between a line and a plane - Co-planarity of two lines.

Unit IV

Shortest distance between two lines - The equations of two skew lines in a simplified form - The Intersection of three planes - Volume of a tetrahedron.

Unit V

Equation of the sphere in its general form - Determination of the centre and radius of a sphere - The length of the tangent from the point to the sphere - Section of sphere by a plane - Intersection of two spheres - Tangent plane.

Text Book:

Manicavachagom Pillay, T. K., & Natarajan. (2007). Analytical Geometry (Part II-Three dimensions). Viswanathan S. Printers & Publishers Pvt. Ltd.

Chapters: 1 - 4 (Except section 9 in chapter 3).

- 1. Arumugam, S., & Thangapandi Issac, A. (2014). Analytical Geometry 3D and Vector Calculus. New Gamma Publishing House.
- 2. Kar, B.K. (2012). Advanced Analytical Geometry and Vector Calculus. (Revised Edition). Books and Allied (p) Ltd.
- 3. Chatterjee, D. (2009). Analytical Geometry Two and Three Dimensions. New Delhi: Narosa Publishing House Pvt.Ltd.
- 4. Jain, P. K., Khalil Ahmad. (1999). Textbook of Analytical Geometry of Three Dimensions. (2nd Edition). New Age International (p) Limited Publishers.
- 5. Arup Mukherjee., & Naba Kumar Bej. (2015). Analytical Geometry of Two and Three Dimensions. (Advanced Level). Books and Allied (p) Ltd.

Name of the course : Applied Statistics (Allied)

Course Code : MA1741

No. of hours per week	Credit	Total No. of hours	Marks
5	5	75	100

Objectives:

1. To acquire the knowledge of correlation theory and testing hypothesis

2. To solve research and application oriented problems

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO – 1	identify and demonstrate appropriate sampling processes	PSO – 8	An
CO – 2	recall the methods of classifying and analyzing data relative to single variable	PSO – 1	R
CO - 3	describe the χ^2 distribution in statistics	PSO – 7	U
CO - 4	distinguish between the practical purposes of a large and a small sample	PSO – 8	An
CO - 5	understand that correlation coefficient is independent of the change of origin and scale	PSO – 4	U

Correlation - Properties of correlation coefficient - Rank correlation - Regression - Equation of regression lines - Angle between regression lines.

Unit II

Test of significance - Sampling - Sampling distribution - Testing of hypothesis - Procedure for testing of hypothesis for large samples - Test of significance for proportions and percentages.

Unit III

Test of significance for means, difference of sample means, standard deviation and correlation coefficient.

Unit IV

Test of significance for small samples - Test of significance based on t-distribution - Test of significance based on F-test - Test of significance of an observed sample correlation.

Unit V

Test based on χ^2 -distribution - χ^2 test for population variance, goodness of fit and independence of attributes - Yate's Correction.

Text Book:

Arumugam, S., & Thangapandi Isaac, A. (2006). Statistics. New Gamma Publishing House. Palayamkotai.

Chapters: 6, 14, 15, 16.

- Kapur, J. N., & Saxena. (1986). Mathematical Statistics. (12th Edition). Chand & Company.
- 2. Pillai, R. S. N., & Bagavathi, V. (1989). Statistics. (12th Edition). Chand & Company.
- 3. Mangaladoss., & Others. (1994). Statistics and its Application. Suja Publishing House.
- 4. Sharma, J. N., & J. K. Goyal. (1987). Mathematical Statistics. (11th Edition). Krishna Bakashar Mandir.
- 5. Robert, V., Hogg., Joseph., Mckean, W., Allen., & Craig, T. (2013). Introduction to Mathematical Statistics. (6th Edition). Dorling Kindersley (India) Pvt. Ltd.

Semester : IV/ VI

Name of the course : Self-Learning Course – Discrete Mathematics - II

Course Code : MC17S2

Objectives:

1. To develop the interest of self-learning in diverse subjects related to Mathematics

2. To convert real life problems into mathematical problems

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	interpret mathematical notation and mathematical definitions	PSO - 1	U
CO - 2	define eigen values and eigen vectors	PSO - 1	R
CO - 3	develop a historical perspective of modern discrete mathematics	PSO - 5	С
CO - 4	explain the Basic Boolean Algebra laws	PSO - 1	U
CO - 5	evaluate discrete mathematics problems that involve computing permutations and combinations of a set	PSO - 4	An
CO - 6	relate distributive lattice and complimented lattice	PSO - 2	Ap

Lattices - Introduction - Hasse Diagram - Examples and Problems - Properties of a Lattice with proof - Distributive Lattice - Complimented Lattice - Sublattice - Definition - Isotonicity property - Modular inequality in a Lattice.

Unit II

Boolean Algebra - Definition - Basic Boolean Algebra laws - Principle of Duality - Chain - Properties - Direct product of lattices - Problems.

Unit III

Matrices - Definition - Rank of a matrix - Elementary transformations - Solutions of a system of linear equations.

Unit IV

Eigen values and Eigen vectors - Singular and Non-singular matrices - Inverse of a square matrix - Adjoint of a square matrix - Cayley Hamilton Theorem.

Unit V

Combinatorics - The basics of counting - Product Rule - The Sum Rule - Pigeonhole Principle - Permutation - Circular Permutation - Problems.

Text Book:

P. Geetha. (2011). Discrete Mathematics. Chennai: SCITECH Publications.

Chapter 4: Sections 4.1 to 4.10; Chapter 10: Sections 10.1 to 10.11;

Chapter 7: 7.1 to 7.10

- 1. Vatsa, B. S., & SuchimVatsa. (2009). Discrete Mathematics. (4th Edition). New Age International Publications.
- 2. Mallik, D. S., & Sen, M. K. (2010). Discrete Mathematics Theory and Applications. (Revised Edition). Cengage Learning India Pvt. Ltd.
- 3. Chauhan, P. (2015). Discrete Structures and Graph Theory. (6th Edition). Krishna Prakashan Media Pvt. Ltd.
- 4. Bernard Kolman., Robert C. Busby., & Sharon Cutler Ross. (2009). Discrete Mathematical Structures. (6th Edition). PHI Learning Pvt. Ltd.
- 5. Lovasz, L., Pelikan, J., & Vesztergombi, K. (2008). Discrete Mathematics Elementary and Beyond. (5th Edition). Springer International Edition.

Name of the course : Linear Algebra

Course Code : MC1751

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives:

- 1. To introduce the algebraic system of Vector Spaces, inner product spaces
- 2. To use the related study in various physical applications

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	recall and define Groups ,Fields and their properties	PSO - 1	R
CO - 2	cite examples of vector spaces ,subspaces and linear transformations	PSO - 1	U
CO - 3	determine the concepts of linear independence, linear dependence, basis and dimension of vector spaces	PSO - 1	U
CO - 4	correlate rank and nullity ,Linear transformation and matrix of a Linear transformation	PSO - 2	Ap
CO - 5	examine whether a given space is an inner product space and the orthonormality of sets	PSO - 3	Ap

Vector spaces - Definition and Examples - Subspaces - Linear transformation.

Unit II

Span of a Set - Linear Independence - Basis and Dimension.

Unit III

Rank and Nullity - Matrix of a Linear Transformation - Characteristic Equation and Cayley-Hamilton Theorem - Eigen values and Eigen vectors.

Unit IV

Inner Product Spaces - Definition and examples - Orthogonality - Orthogonal complement.

Unit V

Bilinear forms - Quadratic forms - Reduction of a quadratic form to the diagonal form.

Text Book:

Arumugam, S., & Thangapandi Issac, A. (2011). Modern Algebra. Scitech Publications (India) Pvt. Ltd.

Chapter 5: 5.1 to 5.8 Chapter 6: 6.1 to 6.3

Chapter 7: 7.7 & 7.8 Chapter 8: 8.1 & 8.2.

- 1. Santiago, M. L. (2001). Modern Algebra. New Delhi: Tata McGraw Hill Publishing Company Ltd.
- 2. Krishnamoorthy, V., & Mainra, V. P. (1976). An Introduction to Linear Algebra. New Delhi: Affiliated East West Press Pvt. Ltd.
- 3. Gopalakrishnan, N. S. (2015). University Algebra. (3rd Edition). New Age International Publishers.
- 4. Vatsa, B. S., & Suchi Vatsa. (2010). Modern Algebra. (2nd Edition). New Age International Publishers.
- 5. Aloknath Chakrabarti. (2006). A First Course in Linear Algebra. Vijay Nicole Imprints Pvt. Ltd.

Name of the course : Real Analysis II

Course Code : MC1752

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives:

- 1. To introduce Metric Spaces and the concepts of completeness, continuity, connectedness, compactness and uniform convergence
- 2. To use these concepts in higher studies

СО	Upon completion of this course the students will be able to	PSOs Addressed	CL
CO - 1	understand the concepts of completeness, continuity and discontinuity of metric spaces	PSO - 1	U
CO - 2	apply the metric space theorems to real life situations	PSO - 4	Ap
CO - 3	distinguish between continuous functions and uniform continuous functions	PSO - 9	An
CO - 4	use basic concepts in the development of real analysis results	PSO - 1	С
CO - 5	understand the concepts of countable sets, metric space, connectedness, compactness of metric spaces	PSO - 7	U
CO - 6	develop the ability to reflect on problems that are quite significant in the field of real analysis	PSO - 8	Ap

Countable and Uncountable sets - Metric Space - definition and examples - Bounded sets - Open ball - Opens sets - Subspace.

Unit II

Interior of a set - Closed sets - Closure - Limit point - Dense sets - Complete metric space - Cantor's intersection theorem - Baire's Category theorem.

Unit III

Continuity of functions - Composition of continuous functions - Equivalent conditions for continuity - Homeomorphism - Uniform continuity - Discontinuous functions on R.

Unit IV

 $\label{lem:connectedness} \mbox{Connectedness - Definition and examples - Connected subsets of R - Connectedness} \\ \mbox{and continuity - Intermediate value theorem.}$

Unit V

Compactness - Compact space - Compact subsets of R - Equivalent Characterisations for Compactness - Compactness and continuity.

Text Book:

S. Arumugam., & Issac. (2013). Modern Analysis. New Gamma Publishing House. Chapter 1: Sections 1.2 and 1.3; Chapters 2 to 6.

- 1. Bali, N. P. (2005). Real Analysis. Lakshmi Publications.
- 2. Richard., R. & Goldberg. (1973). Methods of Real Analysis. Oxford & IBH Publishing Co.
- 3. Sudhir., Ghorpade, R., Balmohan., & Limaye, V. (2006). A Course in Calculus and Real Analysis. Springer International Edition.
- 4. Protter, M. H., & Morrey, C. B. (1991). A First Course in Real Analysis. (2nd Edition). Springer International Edition.
- 5. Norman., Haaser, B., & Joseph A. Sullivan. (1971). Real Analysis. Van Nostrand Reinhold Company.

Name of the course : Graph Theory

Course Code : MC1753

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives:

- 1. To introduce graphs, directed graphs and the concepts of connectedness and labelings
- 2. To apply these concepts in research

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO – 1	understand the basic definitions to write the proofs of simple theorems	PSO - 1	U
CO – 2	employ the definitions to write the proofs of simple theorems	PSO - 2	Ap
CO – 3	relate real life situations with mathematical graphs	PSO - 3	Ap
CO – 4	develop the ability to solve problems in graph theory	PSO - 4	An
CO – 5	analyze real life problems using graph theory both quantitatively and qualitatively	PSO - 4	An

Graphs and Sub graphs - Definition and Examples - Degrees, Sub graphs, Isomorphism - Ramsey Numbers - Independent sets and coverings - Intersection graphs and line graphs - Matrices - Operations on graphs. Degree Sequences - Graphic Sequences.

Unit II

Connectedness - Walks, Trails and Paths - Connectedness and Components - Blocks - Connectivity. Eulerian Graphs - Hamiltonian Graphs (excluding theorem 5.10).

Unit III

Trees - Characterisation of trees - Centre of a tree - Matchings - Matchings in bipartite graphs.

Unit IV

Planarity - Definition and properties - Colourability - Chromatic number and chromatic index - The Five Colour Theorem - Chromatic polynomials.

Unit V

Directed Graphs - Definition and Basic Properties, Paths and Connections –Eulerian Trail - Digraphs and Matrices - Tournaments.

Text Book:

Arumugam, S., & Ramachandran, S. (2017). Invitation to Graph Theory. Scitech Publications Pvt. Ltd.

Chapters 2 to 5 (excluding theorem 5.10); Chapters 6 & 7; Chapter 8: 8.1; Chapter 9 (excluding section 9.3); Chapter 10.

- Kumaravelu, S., & Susheela Kumaravelu. (1999). Graph Theory. (1st Edition). Printers Janki calendar corporation, Sivakasi.
- 2. Harary F. (1988). Graph Theory. Narosa Publishing House.
- 3. Balakrishnan, R., & Ranganathan, K. (2013). A Text book of Graph Theory. Springer International Edition.
- 4. Gary Chartrand., & Ping Zhang. (2006). Introduction to Graph Theory. McGraw-Hill Edition Pvt. Ltd.
- 5. Douglas B. West. (2003). Introduction to Graph Theory. (2^{nd} Edtion). Prentice Hall of India private limited.

Name of the course : Project
Course Code : MC17534

No. of hours per week	Total No. of hours		Marks
6	5	90	100

со	Upon completion of this course the students will be able to	PSO Addressed	CL
CO – 1	choose a new topic of their interest	PSO - 1	U
CO – 2	develop the attitude of studying a topic in depth independently	PSO - 4	An
CO – 3	express their views with confidence in a group	PSO - 1	U
CO - 4	relate with the group members and reap the best harvest	PSO - 3	Ap
CO - 5	develop communication skills through oral presentation	PSO - 4	An
CO - 6	create a taste for research in mathematics	PSO - 5	С
CO - 7	develop confidence to face interviews		С
CO - 8	Interpret and analyze data mathematically	PSO - 4	An

Dissertation framework

- 1. The Project format should be in:
 - Font Times New Roman
 - Heading Font size 14 (Bold) Uppercase
 - Sub headings Font size 12 (Bold) Lowercase; should be numbered.
 - (Eg: Introduction 1; Subheading 1.1; 1.2)
 - Text, the content of the dissertation Font size -12 (Normal).
 - Citation Any works of other researchers, if used either directly or indirectly should be indicated at appropriate places in the text.

The citation may assume any one of the following forms:

- i) A paper, a monograph or a book with single author may be designated by the name of the first author followed by the year of publication, placed inside brackets at the appropriate places in the text.
- ii) A paper, a monograph, or a book with two authors may be designated by the name of the first and second author followed by the year of publication, placed inside brackets at the appropriate places in the text.
- iii) A paper, a monograph, or a book with more than two authors may be designated by the name of the first author followed by et al, and the year of publication, placed inside brackets at the appropriate places in the text.
 - Line space 1.5
 - Margin 2" on the left and 1" on the right, Gutter -0.5.
 - Page Numbering Bottom middle alignment; excluding initial pages and
 - reference
 - Total number of pages Minimum 30 Maximum 50 (excluding initial pages and
 - reference).
 - The Tables and Figures should be included subsequently after referring them in
 - the text of the Thesis.
 - The thesis from Chapters should be printed on both sides.
- II. Project Report must be completed within the stipulated time.

III. Submission of Project Report:

- One soft copy (PDF format in CD)
- Three hard copies (soft binding) duly signed and endorsed by the Supervisor and the Head.

The Project Report will have three main parts:

I. Initial Pages - in the following sequence

- (a) Title Page
- **(b)** Certificate from the Supervisor
- (c) Declaration by the candidate endorsed by the Supervisor and HOD.
- (d) Acknowledgement (within one page signed by the candidate).
- (e) Table of Contents
- **(f)** List of abbreviations
- (g) Abstract

II. Main body of the dissertation

- (a) Introduction with Literature review and Objectives
- **(b)** Methodology
- (c) Results
- (d) Discussion
- (e) Summary
- **(f)** References

III Reference

The guidelines for reference

Journal Article: with Single Author

Waldron, S 2008, "Generalized Welch bound equality sequences are tight frames", IEEE Transactions on Information Theory, vol. 49, no. 9, pp. 2307-2309.

Journal Article: with Two Authors

Conley, TG & Galeson, DW 1998, "Nativity and wealth in mid-nineteenth century cities", Journal of Economic History, vol. 58, no. 2, pp. 468-493.

Journal Article: with more than two Authors

Alishahi, K, Marvasti, F, Aref, VA & Pad, P 2009, "Bounds on the sum capacity of synchronous binary CDMA channels", Journal of Chemical Education, vol. 55, no. 8, pp. 3577-3593.

Books

Holt, DH 1997, Management Principles and Practices, Prentice-Hall, Sydney. Centre for Research, M S University - Ph.D. Revised Guidelines Page | 39 / 41

E-book

Aghion, P & Durlauf, S (eds.) 2005, Handbook of Economic Growth, Elsevier, Amsterdam. Available from: Elsevier books. [4 November 2004].

Conference Proceeding Paper with Editors

Riley, D 1992, "Industrial relations in Australian education", in Contemporary Australasian industrial relations: proceedings of the sixth AIRAANZ conference, ed. D. Blackmur, AIRAANZ, Sydney, pp. 124-140.

Conference Proceeding Paper without Editors

Fan, W, Gordon, MD & Pathak, R 2000, "Personalization of search engine services for effective retrieval and knowledge management", Proceedings of the twenty-first international conference on information systems, pp. 20-34.

Website

Australian Securities Exchange 2009, Market Information. Available from: [5 July 2009].

Thesis

Unpublished Hos, JP 2005, Mechano chemically synthesized nano materials for intermediate temperature solid oxide fuel cell membranes. Ph.D. thesis, University of Western Australia. Newspaper Print Ionesco, J 2001, 'Federal election: new Chip in politics', The Advertiser 23 October, p. 10.

Name of the course : Numerical Methods – Elective I (a)

Course Code : MC1755

No. of hours per week	Credits	Total No. of hours	Marks
5	4	75	100

Objectives:

- 1. To study Numerical differentiation and Numerical integration using different formulae
- 2. To develop various methods for solving applied scientific problems

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	understand the basic definitions and meaning of interpolation	PSO - 1	U
CO - 2	select appropriate numerical methods and apply the same to various types of problems	PSO - 1	U
CO - 3	apply numerical methods to obtain approximate solutions to mathematical problems	PSO - 3	Ap
CO - 4	employ different methods of constructing a polynomial using various methods	PSO - 2	A
CO - 5	compare the rate of convergence of different numerical formula	PSO - 4	An
CO - 6	distinguish the advantages and disadvantages of various numerical methods	PSO - 4	An

Solutions of algebraic and transcendental equations. Iteration method - Newton Raphson method - Finite difference - Difference operators.

Unit II

Newton's Interpolation formulae - Lagrange's Interpolation formula - divided difference - Newton's divided difference formula.

Unit III

Numerical differentiation - derivatives using Newton's forward difference formula - backward difference formula.

Unit IV

Numerical integration - Newton cote's - quadrature formula - Trapezoidal rule-Simpson's (1/3) rd rule - Simpson's (3/8) th rule.

Unit V

Numerical solution of differential equation - Taylor's series method - Picard's method.

Text Book:

Arumugam, S., Thangapandi Issac, A., & Somasundaram, A. (2002). Numerical Methods. Scitech Publications Pvt. Ltd.

Chapter 3: Sections 3.0, 3.2 & 3.5 Chapter 6: Sections 6.1;

Chapter 7: Sections 7.1, 7.3 - 7.5;

Chapter 8: Sections 8.1, 8.2 & 8.5 (except Weddle's rule, Boole's rule & Romberg's method) & Chapter 10: Sections 10.1 &10.2.

- 1. Sastry, S.S. (2003). Introduction methods of numerical analysis. (3^{rd} Edition). Prentice Hall of India.
- 2. Scar Borough, J.N. (1966). Numerical mathematical analysis. (6th Edition). Oxford and IBH Publishing Co.
- 3. Gupta, P. P., G.S.Malik., & Sanjay Gupta. (1992). Calculus of finite differences and numerical analysis. (16th Edition). KRISHNA Prakashan Mandir.
- 4. Devi Prasad. (2010). An Introduction to Numerical Anaysis. Narosa Publishing House.
- 5. Bhupendra Singh. (2012). Numerical Analysis. (2^{nd} Edition). Pragati Prakashan Educational Publishers.

Name of the course : Fuzzy Mathematics – Elective I (b)

Course Code : MC1756

No. of hours per week	Credits	Total No. of hours	Marks
5	4	75	100

Objectives:

- 1. To understand Fuzzy concepts of sets and operations
- **2.** To apply the Fuzzy concepts in image processing, machine learning and artificial intelligence

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	understand the basic mathematical operations carried out on fuzzy sets	PSO - 1	U
CO - 2	compare fuzzy sets with crisp sets	PSO - 4	An
CO - 3	explain classical logic and fuzzy logic	PSO - 1	U
CO - 4	describe the significance of fuzzy systems and genetic algorithms	PSO - 1	U
CO - 5	solve problems that are appropriately solved by neural networks, fuzzy logic and genetic algorithms	PSO - 3	Ap
CO - 6	apply the concepts fuzzy systems and neural networks in various fields like machine intelligence and robotics	PSO - 2	Ap
CO - 7	differentiate between Possibility theory and Probability theory	PSO - 4	An

Crisp set - Operations on Crisp Set - Fuzzy Set - Types of Fuzzy set - Operations on Fuzzy Sets - Properties of operation on Fuzzy Sets - Product on Fuzzy Sets. Fuzzy Numbers Linguistic Variables - Fuzzy Arithmetic.

Unit II

Operation On Fuzzy Numbers, Fuzzy Equations - Lattice of Fuzzy Numbers - Classical Logic - Logical Connectives - Truth Values and Truth Tables - Algebra of Statements - Logical Identies and implications - Fuzzy Logic - Fuzzy Logic Truth Tables - Fuzzy Connectives. Fuzzy Grammar - Properties of Modifier - Inference Rules.

Unit III

Relations on Fuzzy set - Composition of Fuzzy Relation - Fuzzy Equivalence Relation - Fuzzy ordering relation - operations on fuzzy Relation - Role of Fuzzy Relation Equation.

Unit IV

Fuzzy Data Mining - Fuzzy Systems Neural Network - Fuzzy Automata - Fuzzy Systems and Genetic Algorithm.

Unit V

Fuzzy Measure, Evidence Theory - Dempster Rule of Combination - Marginal Basic Assignment - Possibility Theory - Possibility Theory versus Probability Theory.

Text Book:

HoodaVivekRaich, D.S. (2015). Fuzzy Set Theory and Fuzzy Controller, Narosa Publishing House.

```
Chapter 1: 1.2 - 1.6; Chapter 2: 2.2 - 2.7; Chapter 3: 3.2 - 3.12; Chapter 4: 4.2 - 4.7; Chapter 5: 5.2 - 5.6; Chapter 6: 6.2 - 6.7
```

- 1. Zimmermann, H. J. (2001). Fuzzy Set Theory and Its Applications. (4th Edition). Springer International Edition.
- 2. Bhargava, A. (2013). Fuzzy Set Theory Fuzzy logic and their Application. S.Chand Publishing.
- 3. Ganesh, M. (2006). Fuzzy sets and Fuzzy logic. Prentice Hall India learning private limited.
- 4. Shinghal. (2012). Introduction to Fuzzy logic. Prentice Hall India learning private Limited.
- 5. Nanda, S. & Das, N. R. (2015). Fuzzy Mathematical Concepts. Narosa Publishing House Pvt. Ltd.

Name of the course : Computer Oriented Programming with C++- Elective I(c)

Course Code : MC1757

No. of hours per week	Credits	Total No. of hours	Marks
5	4	75	100

Objectives:

1. To learn and write programmes in C++ Language

2. To enhance job opportunities

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	apply C++ features to program design and implementation	PSO - 3	Ap
CO - 2	explain object oriented concepts and describe how they are supported by C++	PSO - 1	U
CO - 3	use C++ to demonstrate practical experience in developing object oriented solutions	PSO - 2	Ap
CO - 4	design and implement programs using C++	PSO - 3	Ap
CO - 5	analyze a problem description and design object oriented software using good coding practices and techniques	PSO - 4	An
CO - 6	implement an achievable practical applications and analyze issues related to object oriented techniques in the C++ programming language	PSO - 5	С
CO – 7	use common software patterns in object oriented design and recognize their applicability to other software development contexts	PSO – 1	U
CO - 8	create application using C++ programming language	PSO - 5	С
CO - 9	write algorithm for programs	PSO - 1	U

Basic concepts of object - oriented programming - benefits of OOP - applications of C++ - simple program - more statements - structure of C++ program - creating the source file - compiling and linking.

Unit II

Tokens - keywords - identifiers and constants - basic data types - user defined data types - derived data types - symbolic constants - variables - operators - manipulators - expressions and their types - operator overloading - operator precedence - control structures.

Functions in C++ - main function - function prototyping - call by reference - return by reference - in line functions - default argument - function overloading - math library functions.

Unit III

Classes and objects - defining member functions - C++ program with class - member functions - arrays within a class - arrays of objects - objects as function arguments - returning objects - constant member functions - pointer to members.

Unit IV

Constructors - parametrized constructors - multiple constructors - constructors with default arguments - dynamic initialization - copy constructor - dynamic constructor - constructing two dimensionl arrays - destructors. Defining operator overloading - overloading unary operators - manipulation of string using operators.

Unit V

Defining derived class - single inheritance - multilevel inheritance - hierarchial inheritance - hybrid inheritance - virtual base classes - abstract classes - nesting classes - basic concepts in pointers.

Text Book:

Balagurusamy, E. (2011). Object oriented programming with C++. (5th Edition). (TMH).TataMaGraw Hill Publication.

Chapter 1: Sections 1.5 - 1.8; Chapters 2 to 8 and Chapter 9: Sections 9.1, 9.2.

- 1. Ravichandran, D. (2002). Programming with C⁺⁺ Tata MaGraw Hill Publication.
- 2. Paul Deitel., & Harvey Deitel. (2013). C++ How to program. (8th Edition). PHI Learning Private Limited Publication.
- 3. Stanley Hoffman. (2015). C++: For Beginners. Addison Wesley professional.
- 4. BjarneStroustrup. (2014). Programming: Principles and practice using C++. (2nd Edition). Addison Wesley professional.
- 5. Scott Meyers, (2014). Effective C++. (1st Edition). O 'Reilly Media.

Name of the course : Mathematics for Competitive Examinations - I

Course Code : MSK175

No. of hours per week	Credits	Total No. of hours	Marks
2	2	30	100

Objectives:

1. To develop the quantitative aptitude of the students

2. To solve problems needed for various competitive examinations

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	recall the problems on percentage	PSO - 1	R
CO - 2	discuss the problems on population and depreciation	PSO - 1	U
CO - 3	conversion of decimal into percentage and vice versa	PSO - 2	Ap
CO - 4	use percentage concept to solve applied technical problems	PSO - 3	Ap
CO - 5	analyze the problems related to inlet and outlet of the tank	PSO - 4	An
CO - 6	evaluate time and distance related problems	PSO - 4	E
CO - 7	create the ability to make an appropriate mixture	PSO - 5	С

Percentage - Conversion of decimal into percentage and vice versa, Problems on Population and Depreciation.

Unit II

Partnership - Problems on ratio of division of gains, working partners and sleeping partners.

Unit III

Pipes and Cistern - Problems related to inlet and outlet of the tank.

Unit IV

Time and Distance - Average speed, ratio of speeds.

Unit V

Boats and Streams - Speed of downstream, Speed of upstream, Speed of still water, Rate of stream - Alligation or Mixture.

Text Book:

Agarwal, R.S. (2014). Quantitative Aptitude. (Revised Edition). S. Chand & Company Pvt. Ltd.

Chapters: 10,13, 16, 17, 19 and 20.

- 1. Guha, A. (2011). Quantitative Aptitude for Competitive Examinations. (4th Edition). McGraw Hill Education. (India) Pvt. Ltd.
- 2. Immaculate, M. (2009). Mathematics for Life. Nanjil offset Printers.
- 3. Arun Sharma. (2008). Objective Mathematics. (2^{nd} Edition). Tata McGraw-Hill Publishing Company Limited.
- 4. Chauhan, R.S. (2011). Objective Mathematics. Unique Publisher.
- 5. Goyal, J. K., & Gupta, K. P. (2011). Objective Mathematics. (6th Revised Edition). Pragati Prakashan Educational Publishers.

Name of the course : Complex Analysis

Course Code : MC1761

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives:

- 1. To introduce the basic concepts of differentiation and integration of Complex functions
- 2. To apply the related concepts in higher studies

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	understand the geometric representation of complex numbers	PSO - 1	U
CO - 2	use differentiation rules to compute derivatives and express complex- differentiable functions as power series	PSO - 4	Е
CO - 3	compute line integrals by using Cauchy's integral theorem and formula	PSO - 3	Е
CO - 4	identify the isolated singularities of a function and determine whether they are removable, poles or essential	PSO - 1	U
CO - 5	evaluate definite integrals by using residues theorem	PSO - 8	Е

Complex numbers - conjugation and modulus, inequalities, square root, geometrical representation, n^{th} roots of complex numbers, circles, straight lines, regions of the complex plane, the extended complex plane.

Unit II

Analytic functions - Differentiability, Cauchy Riemann equations, Analytic functions, Harmonic function. Bilinear transformations - Elementary transformations (Definitions only), Bilinear Transformations, Cross ratio.

Unit III

Complex integration - Definite Integral, Cauchy's theorem, Cauchy's integral formula.

Unit IV

Series Expansions - Taylor Series, Laurent's Series, Zeros of Analytic Functions, Singularities. (Definitions & examples only).

Unit V

Calculus of Residues - Residues, Cauchy's Residue Theorem, Evaluation of Definite Integrals (Type 1 only).

Text Book:

Arumugam, S., Thangapandi Issac, A., & Somasundaram, A. (2018). Complex Analysis. Scitech publications.

Chapter 1: Sections 1.1 - 1.9; Chapter 2: Sections 2.5 - 2.8;

Chapter 3: Sections 3.1 - 3.3; Chapter 6: Sections 6.1 - 6.3;

Chapter 7: Sections 7.1- 7.4 & Chapter 8: Sections 8.1 - 8.3 (Type 1 only)

- 1. Goyal., Gupta., & Pundir. (2012). Complex Analysis. (1st Edition). Pragati Prakashan Educational Publishers.
- 2. Durai Pandian, P., Laxmi Durai Pandian., & Muhilan, D. (2001). Complex Analysis. Emerald Publishers.
- 3. Duraipandian, P., & Kayalal Pachaiyappa. (2014). Complex Analysis. (1st Edition). S. Chand and Company Pvt. Ltd.
- 4. Ruel V. Churchill., & James Ward Brown. (1990). Complex Variables and Applications. McGraw-Hill International Edition.
- 5. Anuradha Gupta. (2011). Complex Analysis. Ane Books Pvt. Ltd.

Name of the course : Mechanics
Course Code : MC1762

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives:

- 1. To study the application of Mathematics in Physical Sciences
- 2. To solve related problems

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	calculate the reactions necessary to ensure static equilibrium	PSO - 2	U
CO - 2	apply the principles of static equilibrium to particles and rigid bodies	PSO - 4	Ap
CO - 3	understand the ways of distributing loads	PSO - 7	U
CO - 4	identify internal forces and moments of a rigid body	PSO - 6	U
CO - 5	apply the basic principles of projectiles into real world problems	PSO - 2	Ap
CO - 6	classify the laws of friction	PSO - 4	An
CO - 7	describe energy methods for particles and systems of particles	PSO - 1	U
CO - 8	understand the general principles of dynamics	PSO - 7	U
CO - 9	differentiate the various frictional forces	PSO - 2	An

Lami's Theorem - Parallel Forces, like and unlike parallel forces - Equilibrium of three coplanar forces - Centre of two parallel forces - Moments - Varignon's theorem of moments - Generalised theorem of moments.

Unit II

Coplanar Forces - Reduction of any number of coplanar forces - Conditions for a system of forces to reduce to a single force or a couple - Change of the base point - Equation to the line of action of the resultant - Solution of problems.

Unit III

Friction - Statical, Dynamical and Limiting friction - Laws of friction - Coefficient of friction - Angle of friction - Cone of friction - Equilibrium of a body on a rough inclined plane - Problems on friction.

Unit IV

Projectiles - Equation of path - Characteristics of the motion of the projectile - Maximum horizontal range - Two directions of projection for a given velocity - Velocity of the projectile.

Unit V

Simple Harmonic Motion in a straight line - General solution of the SHM - Geometrical representation - Change of origin - Simple harmonic motion on a curve - Simple pendulum - Period of oscillation of a simple pendulum - Equivalent simple pendulum - Seconds pendulum.

Text Books:

- 1. Venkataraman, M. K. (2012). Statics. (15th Edition). Agasthiar Publications. Chapter 2: Section 2.9; Chapter 3: Sections 3.1 to 3.13; Chapter 6: Sections 6.1 to 6.3(Analytical proof only), 6.5, 6.7, 6.8, 6.13; Chapter 7: Sections 7.1 to 7.13 (up to example 15).
- 2. Venkataraman, M. K. (2012). Dynamics. (15th Edition). Agasthiar Publications. Chapter 6: Sections 6.1 to 6.10; Chapter 10: Sections 10.1 to 10.5, 10.11 to 10.15.

- 1. Durai Pandian, P., Lexmi Durai Pandian., & Muthamizh Jayapragasam. (2011). Mechanics. Chand S. & Company Ltd.
- 2. Rajeshwari, I. (2016). Mechanics. (1st Edition). Saras Publication.
- 3. Chaudhry, K. R., & Aggarwal, A. C. (1983). Elements of Mechanics. Chand, S.& Company Ltd.
- 4. Mathur, D. S. (1985). Mechanics. S.Chand & Company Ltd.
- 5. John., Synge, L., Byron., & Griffith, A. (1970). Principles of Mechanics. (International Student Edition). McGraw Hill Kogakusha Ltd.

Name of the course : Number Theory

Course Code : MC1763

No. of hours per week	Credits	Total No. of hours	Marks
5	5	75	100

Objectives:

- 1. To introduce the fundamental principles and concepts in Number Theory
- 2. To apply these principles in other branches of Mathematics.

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	express the concepts and results of divisibility of integers effectively	PSO - 1	U
CO - 2	construct mathematical proofs of theorems and find counter examples for false statements	PSO - 6	С
CO - 3	collect and use numerical data to form conjectures about the integers	PSO - 5	Ap
CO - 4	understand the logic and methods behind the major proofs in Number Theory	PSO - 7	U
CO - 5	solve challenging problems related to Chinese remainder theorem effectively	PSO - 3	Е
CO - 6	build up the basic theory of the integers from a list of axioms	PSO - 1	U
CO - 7	explore some current research problems in number theory	PSO - 2	С
CO - 8	apply Fermat's theorem and Wilsons theorem effectively	PSO - 8	Ap
CO - 9	use mathematical induction and other types of proof writing techniques	PSO - 1	Ap
CO - 10	understand and utilize mathematical functions and empirical principles and processes	PSO - 7	U

Divisibility Theory in the Integers - The Division Algorithm -The greatest common divisor - The Euclidean Algorithm.

Unit II

The Diophantine Equation ax + by = c - Primes and Their Distribution -The fundamental theorem of arithmetic - The Sieve of Eratosthenes.

Unit III

The Theory of Congruences - Basic properties of congruence - Linear congruences and the Chinese remainder theorem.

Unit IV

Fermat's Little theorem and Pseudo primes - Absolute pseudo primes - Wilsons theorem - Quadratic Congruence.

Unit V

Number Theoretic Functions - The sum and number of divisors -The Mobius Inversion formula - The greatest integer function.

Text Book:

David M. Burton. (2017). Elementary Number Theory. (7th Edition). McGraw Hill Education (India) Private Limited.

Chapter 2: Sections 2.2 - 2.5; Chapter 3: Section 3.1 & 3.2

Chapter 4: Sections 4.2, 4.4; Chapter 5: Sections 5.2, 5.3

Chapter 6: Sections 6.1- 6.3

- 1. Ivan Niven., & Herbert S. Zucker man. (1976). An Introduction to the Theory of Numbers. Wiley Eastern limited.
- 2. Kumaravelu., & Sucheela Kumaravelu. (2002). Elements of Number Theory. Raja Sankar Offset Printers.
- 3. Hardy, G.H., & Wright, E.M. (1975). An introduction to the theory of Numbers. (4th Edition). Oxford at the Clarendon Press.
- 4. Tom M. Apostel. (1998). Introduction to Analytic Number Theory. Narosa Publishing House.
- 5. John Sitillwell. (2009). Elements of Number Theory. Springer International Student Edition.

Name of the course : Operations Research

Course Code : MC1764

No. of hours per week	Credits	Total No. of hours	Marks
5	5	75	100

Objectives:

- 1. To formulate real life problems into mathematical problems
- **2.** To solve life oriented and decision making problems by optimizing the objective function

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	understand the origin and development of Operations Research	PSO - 1	U
CO - 2	explain what is an LPP	PSO - 1	U
CO - 3	define how to formulate an LPP with linear constraints	PSO - 1	R
CO - 4	maximize the profit, minimize the cost, minimize the time in transportation problem , Travelling salesman problem, Assignment problem	PSO - 3	Ap
CO - 5	identify a problem in your locality, formulate it as an LPP and solve	PSO - 4	С

Introduction - Origin and Development of Operations Research - Nature and features of Operations Research - Applications of Operations Research - Formulation of L.P.P - Mathematical Formulation of L.P.P - Solution of L.P.P - Graphical method.

Unit II

Simplex method - Big-M Method - Algorithm for Big-M Method - Two phase method - Phase I: Solving auxiliary LPP using Simplex method - Phase II: finding optimal basic feasible solution.

Unit III

Duality in L.P.P - Primal - Formation of dual L.P.P - Matrix form of primal and its dual - Fundamental theorem of duality - Dual simplex method - Dual Simplex Algorithm - Degeneracy and cycling in L.P.P.

Unit IV

Transportation problems - Mathematical formulation of Transportation Problems - Dual of a Transportation Problem - solution of a Transportation Problem - North-West corner rule - Row minima method - Column minima method - Least cost method - Vogel approximation method.

Unit V

Assignment Problems - Mathematical formulation - Solution to assignment problems - Hungarian Algorithm for solving Assignment Problem - Travelling Salesman Problem.

Text book:

- 1. Kanti Swarup., Gupta, P. K., & Man Mohan. (2009). Operations Research. Sultan Chand & Sons.
- 2. Arumugam, S., & Thangapandi Issac, A. (2015). Operations Research (Linear Programming). (1st Edition). New Gamma Publishing house.

Chapter 3: 3.1 - 3.7, 3.9, 3.10; Chapter 4: 4.1; Chapter 5: 5.1, 5.2

- 1. Gupta, P.K., & Hira, D.S. (1997). Operations Research. S.Chand and Co. Ltd.
- 2. Sankara Narayanan, T., & Joseph A. Mangaladoss. (2004). Operations Research. (5th Edition). Persi Persi Publications.
- 3. Handy, A. Taha. (1989). Operations Research An Introduction. (3^{rd} Edition). Mac Millan Publishing Co. Inc.
- 4. Vittal, P. R., & Malini, V. (2013). Operations Research. Margham Publications.
- 5. Sharma, J. K. (2013). Operations Research Theory and Applications. (5th Edition). Macmillan Publishers India Ltd.

Name of the course : Astronomy – Elective II (a)

Course Code : MC1765

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives:

- 1. To introduce space science and to familiarize the important features of the planets, sun, moon and stellar universe
- 2. To predict lunar and solar eclipses and study the seasonal changes.

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	define the spherical trigonometry of the celestial sphere	PSO - 1	U
CO - 2	discuss the Kepler's laws	PSO - 1	U
CO - 3	calculate the maximum and minimum number of eclipses near a node in a year	PSO - 2	Ap
CO - 4	interpret latitude and longitude and apply this to find the latitude and longitude of a particular place	PSO - 4	Е
CO - 5	distinguish between geometric parallax and horizontal parallax	PSO - 4	An

Spherical trigonometry (only the four formulae) Celestial sphere - Four systems of coordinates - Diurnal motion - Sidereal Time - Hour angle and Azimuth at rising - Morning and Evening stars - Circumpolar stars.

Unit II

The Earth - Zones of the earth - Perpetual Day and Perpetual night - Terrestrial latitude and longitude - Dip of Horizon - Twilight, Duration of Twilight, Twilight throughout night, Shortest Twilight.

Unit III

Refraction - Tangent formula, Constant of Refraction, Refraction on Horizontal and Vertical arcs, Refraction of any arc, Cassini's Formula, Horizontal Refraction. Geocentric parallax - Horizontal parallax - Effect of Geocentric parallax on Right Ascension and Declination - Angular diameter - Geocentric parallax and Refraction.

Unit IV

Kepler's laws - Eccentricity of Earth's orbit - Newton's Law of Gravitation - Newton's deductions from Kepler's laws.

Unit V

Eclipses - Lunar Eclipse - Solar Eclipse - Condition for a Lunar Eclipse - Synodic period of nodes Ecliptic limits - Maximum and minimum number of eclipses near a node in a year - Saros of Chaldeans - Duration of lunar and solar Eclipses.

Text Book:

Kumaravelu, S., & Susheela Kumaravelu. (2012). Astronomy. (10th Edition).

Chapter 2 up to article 83; Chapter 3: Art 93 & Art 106 to 116;

Chapters 4, 5, 6 up to Art 154; Chapter 13

- 1. Subramanian, K., Subramanian, L. V. Venkataraman., & Brothers. (1965). A text book of Astronomy. (1st Edition). Educational Publishers.
- 2. Ramachandran, G. V. (1970). A text book of Astronomy. (7^{th} Edition). Theni Printers.
- 3. Daniel Fleish., Julia Kregenow. (2013). Mathematics of Astronomy. (1st Edition). Cambridge University Press. New York.
- 4. Smart, W. M. (1949). Spherical Astronomy. (4th Edition). Cambridge university press.
- 5. Jean Meeus. (2002). More Mathematical Astronomy morsels. (1st Edition). Willmann Bell Publishing.

Name of the course : Boolean Algebra – Elective II (b)

Course Code : MC1766

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

.

Objectives:

1. To introduce the algebraic structures like lattices and Boolean algebra

2. To apply these concepts in various branches of Mathematics

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	discuss the primary concepts of Lattices and Boolean algebra	PSO - 1	U
CO - 2	recognize upper bound, lower bound, greatest lower bound	PSO - 1	R
CO - 3	differentiate between lattices and complete lattices	PSO - 1	U
CO - 4	relate the concepts of lattice homomorphism and isomorphism	PSO - 2	Ap
CO - 5	formulate problems in Lattices and Boolean Algebra	PSO - 5	С

Partially ordered sets - Chain - Upper and lower bounds - Least upper bound and greatest lower bound - Problems.

Unit II

Lattices - Complete lattice - Principle of duality - Sub lattices - Problems.

Unit III

Lattice homomorphism - Isomorphism theorem - Modular lattice - The chain conditions - Schreier's theorem - Problems.

Unit IV

Decomposition theory for lattices with Ascending chain conditions - Independence - Complemented modular lattice - Problems.

Unit V

Boolean Algebras - elementary properties of complements in Boolean Algebras - Stone's theorem - problems.

Text Books:

- Jacobson, N. (1965). Lectures in Abstract Algebra. (1st Edition). New Delhi: Affliated East- West Press Private Ltd.
 Chapter 7.
- 2. Arumugam, S. (2008). Modern Algebra. Scitech publications. Problems only.

- 1. Vijay Khanna, K., Bhambri, S. K. (1994). Lattices and Boolean Algebra. Vikas Publishing House.
- 2. Sharma, J. K. (2011). Discrete Mathematics. (3rd Edition). Macmillan Publishers India Ltd.
- 3. Goodstein, R.L. (2007). Boolean Algebra. Dover Publications Inc.
- 4. Bradford Henry Arnold. (2011). Logic and Boolean Algebra. Dover Publications Inc.
- 5. Steven Givant., & Paul halmos. (2009). Introduction to Boolean Algebras. Springer.

Name of the course : Web Designing with HTML – Elective II (c)

Course Code : MC1767

No. of hours per week	Credits	Total No. of hours	Marks
6	5	90	100

Objectives:

1. To understand the importance of the web as a medium of communication

2. To create an effective web page with graphic design principles

СО	Upon completion of this course the students will be able to:	PSO Addressed	CL
CO - 1	define modern protocols and systems used on the web(such as HTML,HTTP)	PSO - 1	U
CO - 2	employ fundamental knowledge on web designing with makeup language	PSO - 2	Ap
CO - 3	gain strong knowledge in HTML	PSO - 1	U
CO - 4	use critical thinking skills to design and implement an interactive websites with regard to issues of usability, accessibility and internationalism	PSO - 4	An
CO - 5	to pursue future courses in website development and design	PSO - 2	Ap

Introduction to HTML - Designing a Home Page - History of HTML - HTML Generations - HTML Documents - Anchor Tag - Hyper Links - Sample HTML Documents.

Unit II

Head and Body Sections - Header Sections - Title - Prologue - Links - Colorful Web Page - Comment Lines - Some Sample HTML Documents.

Unit III

Designing the Body Section - Heading Printing - Aligning the Headings - Horizontal Rule - Paragraph - Tab Setting - Images and Pictures - Embedding PNG Format Images.

Unit IV

Ordered and Unordered Lists - Lists - Unordered Lists - Headings in a List - Ordered Lists - Nested Lists.

Unit V

Table Handling - Tables -Table Creation in HTML - Width of the Table and Cells - Cells Spanning Multiple Row/Columns Coloring Cells - Column Specification - Some Sample Tables.

Text Book:

Xavier, C. World Wide Web Design with HTML. Tata Mcgram Hill Publishing Company Limited.

Chapter 4: Sections 4.1 - 4.7; Chapter 5: 5.1 - 5.7;

Chapter 6: 6.1 - 6.7; Chapter 7: 7.1 - 7.5; Chapter 8: 8.1 - 8.7

- 1. Castro., Elizabeth., & Hyslop. (2013). HTML5, And CSS: Visual Quickstart Guide. (Eight Edition). Peachpit Press.
- 2. Devlin., & Ian. (2011). HTML5 Multimedia: Develop and Design. Peachpit Press.
- 3. Felke., & Morris. (2013). Basics of Web Design: HTML5 & CSS3. (2nd Edition). Addition -Wesley.
- 4. Felke & Morris. (2014). -Web Development & Design Foundations with HTML5. (7th Edition). Addition Wesley.
- 5. John Duckett. (2011). HTML and CSS: Design and Build Website. (1st Edition). John wiley and sons.

Name of the course : Mathematics for Competitive Examinations - II

Course Code : MSK176

No. of hours per week	Credits	Total No. of hours	Marks
2	2	30	100

Objectives:

1. To develop the quantitative aptitude of the students

2. To solve problems needed for various competitive examinations

СО	Upon completion of this course the students will be able to	PSO Addressed	CL
CO - 1	recognize the difference between volume and surface areas	PSO - 1	R
CO - 2	demonstrate the basic concepts of Compound interest	PSO - 1	U
CO - 3	apply analytical techniques to solve stocks and shares problems	PSO - 2	Ap
CO - 4	calculate time taken by the train to pass a pole and similar problems.	PSO - 4	An
CO - 5	compare the surface areas of cuboid and cube	PSO - 4	An
CO - 6	evaluate the volume of cylinder	PSO - 5	Е
CO - 7	measure the surface area of the sphere	PSO - 4	Е
CO - 8	examine the face value and market value	PSO - 4	An

Problems on Trains - Finding the time taken by the train to pass a pole or an object of length - Relative Speed - Crossing time of two trains.

Unit II

Compound Interest - Annual, Half-yearly and Quarterly Compound Interest - Present Worth.

Unit III

Volume and Surface Areas - Cuboid, Cube, Cylinder, Cone, Sphere, Hemisphere.

Unit IV

Calendar - Counting Odd Days - Day of the Week related to Odd Days. Clocks.

Unit V

Stocks and Shares - Face Value - Market Value - Brokerage. Banker's Discount - Banker's Discount - Banker's Gain.

Text Book:

Agarwal, R.S. (2014). Quantitative Aptitude. S. Chand & Company Pvt. Ltd.

Chapters: 18, 22, 25, 27, 28, 29 and 33.

- 1. Guha, A. (2011). Quantitative Aptitude for Competitive Examinations. (4^{th} Edition). McGraw Hill Education (India) Pvt. Ltd.
- 2. Immaculate, M. (2009). Mathematics for Life. Nanjil offset Printers.
- 3. Arun Sharma. (2008). Objective Mathematics. (2^{nd} Edition). Tata McGraw-Hill Publishing Company Limited.
- 4. Chauhan, R.S. (2011). Objective Mathematics. Unique Publishers.
- 5. Goyal, J. K., & Gupta, K. P. (2011). Objective Mathematics. (6th Edition). Pragati Prakashan Educational Publishers.